電子状態計算に基づく分子類似性解析とその応用

○杉本 学, 岩根 陵

熊本大院自然科学

sugimoto@kumamoto-u.ac.jp

目的に合致した機能を分子材料で実現するには、必要な特性を持つ分子を発見ないしは創 造する必要がある。それには、全く新しい原子の組み合わせを探索するか、有望な既知化合 物あるいはそれらの新しい組み合わせを探索することが必要である。何れにしても、分子開 発の出発点は「分子を探索すること」であり、そのための有用な技術開発が望まれる。

電子状態理論の進展と計算機性能の大幅な向上のため、現在、電子状態理論の応用によっ て様々な物性・反応性を解析することが可能である。このため「大規模かつ高精度な電子状 態計算ができれば、分子設計は可能である」という主張がなされるに至っているが、現実は どうであろうか?確かに化学現象の解析は大きく進展し、様々な分子設計の指針が提案され るに至っているが、これは分子設計そのものではない。求められるのは「具体的な分子を設 計すること」である。電子状態計算を実行するには分子をインプットとして指定する必要が あるので、それによって分子を設計することはできない。できることは、計算者が検討に値 する有望な分子を複数個提案し、電子状態計算で最も有望な分子を選び出すことである。や はりここでも、計算で検討すべき「分子を探索すること」が出発点となる。つまり、優れた 電子状態理論を有効に活用するためにも、分子探索が大変重要となる。

以上の観点から、我々は「分子探索技術」は極めて重要な研究課題と認識し、その手法の 開発を行っている。本講演では、その一つとして行っている類似分子の探索手法の開発とそ の応用について報告する。ここでは、電子状態計算で得られる数値を分子を表現する「記述 子」とみなし、それに基づいて分子の類似性を数値的に評価することとした。

実際の応用例として、(1)ある分子群(図1)の中から電子的に類似した分子を電子状態 計算によって探索すること、(2)様々な動物に含まれるカロテノイドの電子状態的類似性と 動物の分類との相関を調べること、の2つの応用を試みたので報告する。

の電子的類似度を評価した。そ の結果、同じカロテノイドに分 ヾンゼン 類できる分子の類似度が 70% ルテインA 以上と評価された。これは電子 状態的特徴だけで分子の類似 フェノール 性を識別できることを示して

(1) ではカロテノイドの一種であるルテインAを参照分子とし、これに対する他の分子

(2)については、海洋細菌、 二枚貝、魚類に含まれる30種 類のカロテノイドに注目し、相 互の類似度を評価した。得られ た類似度に基づく順位付けを 行ったところ、分子の分類と動 物種の分類がよく対応した。こ れは、カロテノイドの電子レベ ルの特徴が種の違いに対応づ けられることを示唆している 点でも興味深い。

いる。

図1. 電子状態による類似性探索の有用性を検証するために 検討した分子群

スピン-軌道相互作用を考慮したルテニウム錯体吸収スペクトルの摂動計算

○三嶋 謙二¹, 木下 卓巳¹, 林 倫年², 瀬川 浩司¹, 山下 晃一³, Sheng Hsien Lin⁴ ¹東大先端研, ²台湾大学擬態中心, ³東大院工, ⁴National Chiao Tung University

erdao@tcl.t.u-tokyo.ac.jp

【緒言】光電変換効率 10%を超える有機色素増感型太陽電池の実現が、1991 年に Grätzel ら¹ によって初めて報告されて以来、変換効率向上を目的とした実験的・理論的研究が世界規模 で盛んに行われている。特に、光電変換効率向上を目的として、近赤外領域の長波長太陽光 を十分に吸収する、ルテニウム錯体光増感色素の開発が急務である。例えば、最近、瀬川ら は、光電変換効率 11.4%、~740nm に吸収ピークを持つ、ルテニウムホスフィン錯体(DX)タン デム型太陽電池の開発に成功した²。そのような分子の物性を理論的に考察するためには、長 波長領域での吸収スペクトルを理論的に精度よく再現することが前提となるが、通常の吸収 スペクトルの理論計算では、スピン-軌道相互作用が考慮されないため、実験結果とは全く一 致しない。本発表では、スピン-軌道相互作用を摂動として考慮した、時間依存型密度汎関数 法を用いることによって、重金属錯体吸収スペクトルを理論的に再現する方法について述べ る。また、DX の吸収スペクトルの実験結果と理論計算との比較を行う。

【計算方法】DX の構造最適化、励起エネルギー、振動子強度の計算には、相対論的効果を含 まない、密度汎関数法 B3LYP/LANL2DZ を用いた。メタノール溶媒効果を考慮するために、 PCM(分極連続体モデル)を用いた。更に、スピン-軌道相互作用の影響は、以下のような一次 摂動法を用いることによって、近似的に考慮した。(4d)⁶ 電子配置にあるルテニウム原子のス ピン-軌道相互作用定数(1081cm⁻¹~0.13 eV)は、典型的な HOMO-LUMO 遷移エネルギーの一割 程度に過ぎないので、遷移エネルギーハミルトニアンに対して、分子のスピン-軌道相互作用 ハミルトニアンを、一次の摂動項として扱うことが可能である。また、スピン-軌道相互作用 ハミルトニアンによって摂動を受けた分子軌道は、非摂動一重項、三重項状態の線形結合と して表される。非摂動励起分子軌道間のスピン-軌道相互作用マトリックス要素は、一電子励 起配置の線形結合によって近似的に表された励起状態を用いて計算した。スピン-軌道相互作 用によって摂動を受けた吸収スペクトルの振動子強度と遷移エネルギーは、永年方程式を解 くことによって得られる、波動関数の展開係数から計算される³。

【結果】図2に、実験結果と計算結果を示す。長波長帯での吸収ピーク(~1.66 eV)は、相対論 効果を考慮しない量子化学

が来をち感しない重了化子 計算では全く再現できない (赤点、一重項-三重項遷移 は禁制であるため、振動子 強度ゼロ)。しかし、摂動 計算を用いることによって 、強度とピーク位置とを正 確に再現することができ ることがわかる。

[1] B. O' Regan and M. Grätzel, Nature, **353** (1991) 737.

[2] T. Kinoshita, J. T. Dy, S. Uchida, T. Kubo, and H. Segawa, Nat. Photonics (in press).

[3] K. Nozaki, J. Chin. Chem. Soc., 53 (2006) 101.

基底関数の軌道指数を用いた振動数依存分極率の解析接続法によ る光イオン化断面積の変分的計算

森田 将人¹, ○藪下 聡¹

1慶大理工

yabusita Ochem.keio.ac.jp

【序】光イオン化の遷移モーメントは束縛状態の始状態と連続状態の終状態の間で評価される物理量であるため、通常の電子状態計算とは異なる扱いが必要である。我々は、連続状態を表現するために拡がった基底関数の軌道指数くを複素数にする複素基底関数法¹⁾を用いて解析接続された振動数依存分極率 $\alpha^{-}(\zeta,\omega)$ を、各光子エネルギー ω でくに対して最適化すると、連続状態の情報が効率良く抽出できることを示してきた²⁾。本研究ではさらに、 $\alpha^{-}(\zeta;\omega)$ が解析的に振る舞うくの領域において、その実部、虚部 α_r , α_i ともに $\zeta = \zeta_r + i\zeta_i$ の2変数 ζ_r , ζ_i に関するLaplace方程式を満たすことを用いた新たな理論的手法を示す。本手法は、 $\alpha^{-}(\zeta;\omega)$ の解析性を活かした方法であるため、幅の狭い共鳴ピークに対してStieltjesモーメント法などが持つ欠点を解消する。

【理論・計算方法】単純な水素原子の $ls + \hbar \omega \rightarrow kp$ の問題を例に説明する。終状態kpを近似的に表現するために複素数 ζ の軌道指数を持つ2p-cSTOを用いると、原子単位系で、

$$\alpha^{-}(\zeta,\omega) = \frac{(\ln |\mu| kp)(kp |\mu| \ln)}{E_{kp}(\zeta) - E_{ls} - \omega} = \frac{2^{6} \zeta^{5}}{(1+\zeta)^{8}} \frac{1}{(\zeta^{2}/2 - \zeta/2 + 1/2 - \omega)}$$
(1)

つまりこの $\alpha^{-}(\zeta, \omega)$ は、実軸上の $\zeta = -1, \zeta = (1 \pm \sqrt{8\omega - 3})/2$ に、それぞれ遷移モーメント、 $E_{kp}(\zeta) - E_{1s} = \omega$ に由来する極を持つ²⁾。また $|\zeta| \to \infty$ に対して $\alpha^{-}(\zeta, \omega) \to 0$ 。以下 $\zeta_r, \zeta_i \in x, y$ と表記する。 α_r, α_i は第4象限において解析関数で、Cauchy-Riemannの関係式を満たすの で、 $\alpha_r \alpha_i$ のそれぞれ(以下単に α と代表させる)は、調和関数でx, yに対する 2 次元Laplace 方程式を満たす。 3 次元の静電場の場合と同様、第4象限内部の $\alpha(x, y)$ は、いわゆるDirichlet 境界条件の解として、境界値(表面双極子) $\alpha(x, 0) = f_{\omega}(x), \alpha(0, y) = g_{\omega}(y), \alpha(x, -\infty) = 0,$ $\alpha(\infty, y) = 0$ (x > 0, y < 0)が、2D Laplace方程式のGreen関数により伝搬する形式で表現される。 $\alpha(x, y) = \frac{1}{2} \int_{-\infty}^{\infty} f(\xi) \left\{ -\frac{y}{2} + \frac{y}{2} \right\} d\xi + \frac{1}{2} \int_{-\infty}^{0} g(n) \left\{ -\frac{x}{2} - \frac{x}{2} \right\} dn$, (2)

$$\alpha(x,y) = \frac{1}{\pi} \int_0^\infty f_\omega(\xi) \left\{ -\frac{y}{y^2 + (\xi - x)^2} + \frac{y}{y^2 + (\xi + x)^2} \right\} d\xi + \frac{1}{\pi} \int_{-\infty}^0 g_\omega(\eta) \left\{ \frac{x}{x^2 + (\eta - y)^2} - \frac{x}{x^2 + (\eta + y)^2} \right\} d\eta.$$
(2)

具体的には軌道指数をx, y軸上で動かし、各軌道指数の値に対する境界値 $\alpha(x,0) = f_{\omega}(x)$, $\alpha(0, y) = g_{\omega}(y)$ を多項式にフィットし、 α_i の停留値から $\sigma(\omega)$ を求める。(1)式から分かるように、 実数軌道指数を用いると分極率は実数値しか取らないが、1位の極を持つため、 $f_{\omega}(x)$ には、 x軸上での $\alpha^{-}(\zeta;\omega)$ の特異点の位置と留数の情報だけが含まれる。以上の手法をDirichlet境界 条件法よぶが、 $\alpha(0, y) = g_{\omega}(y)$ の計算のために、純虚数の軌道指数を用いた計算結果も必要で

ある。そこで電子状態計算は実数基底関数だけに制限し、上 記の方法と同様に、分極率の実軸上の極における振る舞いを 反映させた数値的解析接続法の計算手法も開発した。

【結果及び考察】水素原子のDirichlet境界条件法による断面積 と正確な値を図1の+と実線で比較した。+は、(1)式の $\alpha^{-}(\zeta, \omega)$ の鞍点での虚数部の値である \odot と、誤差0.05%以下で 重なった。同様に数値的解析接続法の誤差は0.25%以下であ った。Heの自動イオン化でも良好な結果を得た。

文献、1)T.N.Rescigno *et al. Phys.Rev*.A32, 2134 (1985); 2) M.Morita *et al. J.Comp.Chem.* 29, 2317 (2008).

Ln(COT)₂ 錯体(Ln=La~Lu)の電子状態に関する理論的研究

○中條 恵理華¹, 増田 友秀¹, 藪下 聡¹

1慶大院理工

nakajoe@sepia.chem.keio.ac.jp

【序】ランタノイド原子とシクロオクタテトラエン(COT=1,3,5,7-cyclooctatetraene)が交互に 配列する Ln-COT 錯体は、磁気的・光学的性質を示す新規機能性材料として応用が期待され ている。中でも Ln(COT)₂ は最も単純なサンドイッチ型錯体であり、負イオン化された Ln(COT)₂ は Ln=Eu,Yb を除いて共通の形式電荷 Ln³⁺(COT²⁻)₂を取る。Ln(COT)₂ に関する光電 子分光実験によると、Ln が La から Lu にかけて変化するにつれ、HOMO は強く不安定化す る一方、n-HOMO はわずかに安定化することが分かっている^[1]。本錯体はイオン結合性の強 い化合物であるため、このような軌道エネルギーの変化の違いを理解するためには軌道間相 互作用のみならず静電的な効果も考慮する必要がある^[2]。本研究では点電荷モデルを用いた 計算を行うことで、軌道エネルギーに対する静電的効果を評価した^[3]。また Ln の種類と錯体 の構造パラメータは連動して変化するため、これらを仮想的に独立なものとみなして変化さ せることで、軌道エネルギーの電子構造依存性を別個に評価した。

【計算方法】LnにはDolgらの4f core ECPと(7s6p5d)/[5s4p3d] 基底関数^[4]を、COTの基底関数には6-31+G(d)を用いてHF法による計算を行い、脱離エネルギーはKoopmansの定理を用いて決定した。

【結果】光電子分光実験で得られた脱離エネルギーの変化の傾向は、HF法を用いた計算から も再現された(図1)。HOMOとn-HOMOに相当するHF軌道の概形を見ると、前者はCOT上の 軌道のみから成るのに対し、後者ではCOT上の軌道とLnの5d軌道が同位相で重なり合い(図2)、 若干の共有結合性に寄与している。また本錯体の最適化構造は、LaからLuにかけて価電子軌 道である5s・5p軌道が縮小化するため(Ln収縮)、Ln-COT間の距離は0.25 Å程度短縮した。 HOMOの不安定化は錯体の縮小化に伴い軌道が節面に接近し、運動エネルギーが増加するこ とに起因する。一方 n-HOMOの安定化は錯体中心のLn核に軌道が接近することによる、静電 的な安定化に起因する。n-HOMOに関しては、錯体が縮小化するとCOT上のe2g π軌道と5d軌 道との相互作用が増大すると考えられるため、共有結合的な安定化が期待されるが、実際は 空軌道である5d軌道も収縮を起こすため、これらの軌道間相互作用には顕著なLn依存性はな く、LaからLuにかけて単純に予想されるような大きな安定化は得られないことが分かった。

 HOMO(e2u)
 n-HOMO(e2g)

 図 2. Molekel を用いて作成した、HF 計算で得られた HOMO と n-HOMO の概形。

図1. HF計算により得られた各軌道のエネルギー。図中の数値は Lnの原子番号に対するエネルギー変化の傾きの値を表示している。

T. Kurikawa, Y. Negishi, F. Hayakawa, S. Nagao, K. Miyajima, A. Nakajima, K. Kaya, J. Am. Chem. Soc., 120, 11766 (1998).
 R. Takegami, N. Hosoya, J. Suzumura, K. Yada, A. Nakajima, S. Yabushita, Chem. Phys. Lett., 403, 169 (2005).
 R. Takegami, N. Hosoya, J. Suzumura, A. Nakajima, S. Yabushita, J. Phys. Chem. A, 109, 2476 (2005).
 M. Dolg, H. Stoll, A. Savin, H. Preuss, Theor. Chim. Acta., 75, 173 (1989).

2L05

ランタノイド触媒を用いる水中向山アルドール反応の機構と立体選択性

○畑中 美穂1、前田 理2、諸熊 奎治1

1京大福井謙一研究セ,2北大院理

miho@fukui.kyoto-u.ac.jp

【序】ランタノイド(Ln)を触媒とする水中での C-C 結合生成反応は、環境負荷が低いことか ら、様々な種類の反応への応用が期待されているが、これまで、限られた基質でしか実現し ておらず、なかでも、立体選択的な反応の報告例は、非常に少ない。

Ln は、水中で主に Ln³⁺として存在し、その電子配置は、1s²…4f^v5s²5p⁶のように、開殻 4f 電子が、閉殻な 5s5p 電子に外側から遮蔽されるため、Ln³⁺は、配位子と直接共有結合を形成 しない。そのため、Ln³⁺を含む錯体は、室温条件下では構造がゆらいでおり、立体選択性の 制御に、構造ゆらぎの効果を無視することはできない。そこで、本研究では、Scheme 1 の Eu³⁺ を触媒とする向山アルドール反応^{1,2}を例に、以下の 3 点:(1)水中での Eu³⁺まわりの構造、配 位数、(2)向山アルドール反応の機構、(3)構造ゆらぎが大きい系の *syn/anti* の生成物比をどの ように求めればよいかについて議論する。

Scheme 1. Ln 触媒を用いる向山アルドール反応

【計算方法】はじめに、人工力誘起反応(AFIR)法を用いた反応経路探索を行った。この段階では、近似的に反応経路を探索するため、計算コストの低い方法を採用する。B3LYP法を用い、Eu³⁺には 4f 電子を内殻に含めた相対論的 ECP(RECP)及びその基底関数(7s6p5d)/[2s1p1d]を、他の原子には 6-31G を用いた。溶媒和効果は PCM 法(水)で考慮した。次に、得られた近似反応経路を用いて、中間体や遷移状態の構造を最適化した。ここでは、B3LYP-D 法を用い、Eu³⁺には RECP 基底関数(7s6p5d)/[5s4p3d]を、他には 6-31+G*を用いた。最後に、B3LYP-D3法で一点計算を行った。基底関数には、Eu³⁺には RECP 基底関数(8s7p6d)/[6s5p4d]を、他の原子には cc-pVTZ を用いた。

【結果と考察】(1) まず、Eu³⁺にいくつか水が配位した構造に対して、さらに水一分子が配位 する際に必要な反応障壁と生成物のエネルギーを比較することで、安定な配位構造を議論し た。その結果、Eu³⁺に水のみが配位する場合は、8~9 配位が安定であり、基質のベンズアルデ ヒドが Eu³⁺に配位する場合は、水8分子とアルデヒドの合計9配位が最も安定であることが 分かった。(2) 次に、(1)で得られた配位構造を用いて AFIR 法で反応経路を探索した。本反 応の完結には、C-C 結合形成、プロトン移動、SiMe3の脱離の3ステップが必要であるが、こ れらが段階的に起こること、プロトンの供給源は Eu³⁺周りの配位水であること、SiMe₃の脱離 には配位しない水が必要であることを明らかにした。(3) 最後に、syn、anti 生成物の比を求 める方法について議論する。ここでは、立体選択性を決める C-C 結合生成段階にのみ注目す る。一般的な反応系では、syn、anti 生成物を与える遷移状態を一つずつ求め、そのエネルギ ー差によって syn、antiの生成物比を議論する。しかし本反応では、Eu³⁺まわりの構造ゆらぎ があるため、構造が少しずつ異なる遷移状態が、多数存在する可能性がある。そこで、配向、 反応方向をランダムに決めた 437 個の初期構造から、AFIR 法によって、C-C 結合を形成する 方向に人工力をかけることで、様々な構造の遷移状態を求める試みをし、実際に、syn、anti の生成物を与える遷移状態をそれぞれ 91、74 個得た。これらの遷移状態のうち、エネルギー 差が 2kcal/mol 以下の 17 構造が、syn、anti の生成物比を決めるのに重要な役割を持ち、これ ら全ての遷移状態を考慮することで、syn、antiの生成物比の実験値¹を説明できた。 参考文献: (1) Kobayashi, S. Synlett 1994, 689. (2) Dissanayake, P.; Allen, M. J. J. Am. Chem. Soc. 2009, 131, 6342.